Antirock Primer Soprema Australia Pty Ltd Chemwatch: **5430-59** Version No: **2.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: **30/10/2020**Print Date: **04/11/2020**L.GHS.AUS.EN ### SECTION 1 Identification of the substance / mixture and of the company / undertaking ### **Product Identifier** | Product name | Antirock Primer | | | |-------------------------------|---------------------------------------|--|--| | Synonyms | Not Available | | | | Proper shipping name | ADHESIVES containing flammable liquid | | | | Other means of identification | Not Available | | | ### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Used to prime concrete and metal surfaces on civil engineering structures in order to improve the adhesion of torch-applied waterproofing. Use according to manufacturer's directions. The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. ### Details of the supplier of the safety data sheet | Soprema Australia Pty Ltd | | | |---|--|--| | 100 Barangaroo Avenue Sydney NSW 2000 Australia | | | | 61 3 9221 6230 | | | | Not Available | | | | soprema.com.au | | | | info@soprema.com.au | | | | | | | ### Emergency telephone number | Association / Organisation | Soprema Australia Pty Ltd | | |-----------------------------------|--------------------------------------|--| | Emergency telephone numbers | +61 3 9221 6230 (Mon-Fri 8am to 5pm) | | | Other emergency telephone numbers | Not Available | | ### **SECTION 2 Hazards identification** ### Classification of the substance or mixture | S5 | | | |--|--|--| | Flammable Liquid Category 2, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Carcinogenicity Category 2, Reproductive Toxicity Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Aspiration Hazard Category 1 | | | | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | | | | | | ### Label elements Hazard pictogram(s) Signal word Danger ### Hazard statement(s) | | ······································ | | | | |-------|--|--|--|--| | H225 | Highly flammable liquid and vapour. | | | | | H302 | Harmful if swallowed. | | | | | H315 | Causes skin irritation. | | | | | H319 | Causes serious eye irritation. | | | | | H351 | Suspected of causing cancer. | | | | | H361d | Suspected of damaging the unborn child. | | | | | Н336 | May cause drowsiness or dizziness. | | | | | Н373 | May cause damage to organs through prolonged or repeated exposure. | | | | | H304 | May be fatal if swallowed and enters airways. | | | | Issue Date: 30/10/2020 Print Date: 04/11/2020 ### Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | | | |------|---|--|--| | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | | | | P260 | Do not breathe mist/vapours/spray. | | | | P271 | Use in a well-ventilated area. | | | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | | | P281 | Use personal protective equipment as required. | | | | P240 | Ground/bond container and receiving equipment. | | | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | | P242 | Use only non-sparking tools. | | | | P243 | Take precautionary measures against static discharge. | | | | P270 | Do not eat, drink or smoke when using this product. | | | ### Precautionary statement(s) Response | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. | | | | |--|--|--|--| | IF exposed or concerned: Get medical advice/attention. | | | | | Specific treatment (see advice on this label). | | | | | Do NOT induce vomiting. | | | | | Take off contaminated clothing and wash before reuse. | | | | | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | | | | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | | If eye irritation persists: Get medical advice/attention. | | | | | IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. | | | | | IF ON SKIN: Wash with plenty of water and soap. | | | | | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | | | | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | | | Rinse mouth. | | | | | If skin irritation occurs: Get medical advice/attention. | | | | | | | | | ### Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | ### Precautionary statement(s) Disposal Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. P501 ### **SECTION 3 Composition / information on ingredients** ### Substances See section below for composition of Mixtures ### **Mixtures** | CAS No | %[weight] | Name | |------------|-----------|---------------------| | 108-88-3 | 15-40 | toluene | | 64742-93-4 | 15-40 | bitumen (blown) | | 8052-42-4 | 10-30 | bitumen road making | | 67-64-1 | 5-10 | acetone | ### **SECTION 4 First aid measures** ### Description of first aid measures | if this product comes in contact with the eyes: | |---| | Mach out immediately with freeh running y | ### **Eye Contact** - Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper - Seek medical attention without delay; if pain persists or recurs seek medical attention. - ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. ### If skin or hair contact occurs: - Immediately flush body and clothes with large amounts of water, using safety shower if available. - Quickly remove all contaminated clothing, including footwear. - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. - Skin Contact ► Transport to hospital, or doctor. - Immediately drench burn area in cold running water. - If hot bitumen adheres to the skin, **DO NOT** attempt to remove it (it acts as a sterile dressing). - For burns to the head and neck and trunk, apply cold wet towels to the burn area, and change frequently to maintain cooling. Chemwatch: 5430-59 Page 3 of 16 Issue Date: 30/10/2020 Version No: 2.1.1.1 Print Date: 04/11/2020 ### **Antirock Primer** Cooling should be maintained for no longer than thirty minutes. When hot bitumen completely encircles a limb, it may have a tourniquet effect and should be split as it cools. Transport to hospital or doctor. In case of burns: Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth. DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this can cause further iniury DO NOT break blister or remove solidified material. Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain. For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth. DO NOT apply ointments, oils, butter, etc. to a burn under any circumstances Water may be given in small quantities if the person is conscious. Alcohol is not to be given under any circumstances Reassure. Treat for shock by keeping the person warm and in a lying position. > Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Inhalation Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary ► Transport to hospital, or doctor, without delay. If swallowed do **NOT** induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. • Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Ingestion Seek medical advice. Avoid giving milk or oils Avoid giving alcohol If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of #### Indication of any immediate medical attention and
special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For petroleum distillates - In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration. - Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function. - Positive pressure ventilation may be necessary. - Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia. - After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment. Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated. - Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications. - Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators. ## BP America Product Safety & Toxicology Department Burns: No attempt should be made to remove the bitumen (it acts as a sterile dressing). Cover the bitumen with tulle gras and leave for two days when any detached bitumen can be removed. Re-dress and leave for a further week. If necessary refer to a burns unit. [Manufacturer] - Following acute or short term repeated exposures to toluene: - Toluene is absorbed across the alveolar barrier, the blood/air mixture being 11.2/15.6 (at 37 degrees C.) The concentration of toluene, in expired breath, is of the order of 18 ppm following sustained exposure to 100 ppm. The tissue/blood proportion is 1/3 except in adipose where the proportion is 8/10. - Metabolism by microsomal mono-oxygenation, results in the production of hippuric acid. This may be detected in the urine in amounts between 0.5 and 2.5 g/24 hr which represents, on average 0.8 gm/gm of creatinine. The biological half-life of hippuric acid is in the order of 1-2 hours. - Primary threat to life from ingestion and/or inhalation is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (eg cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 <50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial damage has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenaline) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. - Lavage is indicated in patients who require decontamination; ensure use. ### **BIOLOGICAL EXPOSURE INDEX - BEI** These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Sampling Time Comments o-Cresol in urine 0.5 mg/L End of shift B, NS Hippuric acid in urine 1.6 g/g creatinine End of shift Toluene in blood 0.05 mg/L Prior to last shift of workweek NS: Non-specific determinant; also observed after exposure to other material B: Background levels occur in specimens collected from subjects NOT exposed ### **SECTION 5 Firefighting measures** Chemwatch: 5430-59 Version No: 2.1.1.1 #### **Antirock Primer** Issue Date: 30/10/2020 Print Date: 04/11/2020 - ▶ Do NOT direct a solid stream of water or foam into burning molten material; this may cause spattering and spread the fire. - ▶ Foam - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. #### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result ### Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water course. - Consider evacuation (or protect in place). ### Fire Fighting - Fight fire from a safe distance, with adequate cover. - If safe, switch off electrical equipment until vapour fire hazard removed. - ▶ Use water delivered as a fine spray to control the fire and cool adjacent area. - Avoid spraying water onto liquid pools. - Do not approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. # Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat, flame and/or oxidisers. - ▶ Vapour may travel a considerable distance to source of ignition. - ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. - ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). #### Combustion products include: carbon dioxide (CO2) Fire/Explosion Hazard sulfur oxides (SOx) sulfur dioxide (SO2) hydrogen sulfide (H2S) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. May emit clouds of acrid smoke NOTE: Burns with intense heat. Produces melting, flowing, burning liquid and dense acrid black smoke. CARE: Contamination of heated / molten liquid with water may cause violent steam explosion, with scattering of hot contents. HAZCHEM •3YE ### **SECTION 6 Accidental release measures** ### Personal precautions, protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 ### Methods and material for containment and cleaning up Minor Spills Major Spills | ۰ | Remove a | ıll ignitio | on sources. | |---|----------|-------------|-------------| |---|----------|-------------|-------------| - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - Contain and absorb small quantities with vermiculite or other absorbent material. - Wipe up. - Collect residues in a flammable waste container. Chemical Class: aromatic hydrocarbons For release onto land: recommended sorbents listed in order of priority. | SORBENT
TYPE | RANK | APPLICATION | COLLECTION | LIMITATIONS | |-----------------|------|-------------|------------|-------------| |-----------------|------|-------------|------------|-------------| ### LAND SPILL - SMALL Easthara pillou | Feathers - pillow | 1 | throw | pitchfork | DGC, RT | |---|---|--------|-----------|---------------| | cross-linked polymer - particulate | 2 | shovel | shovel | R,W,SS | | cross-linked polymer- pillow | 2 | throw | pitchfork | R, DGC, RT | | sorbent clay - particulate | 3 | shovel | shovel | R, I, P, | | treated clay/ treated natural organic - particulate | 3 | shovel | shovel | R, I | | wood fibre - pillow | 4 | throw | pitchfork | R, P, DGC, RT | ### wood fibre - pillow LAND SPILL - MEDILIM | EAND OF ILL WEDIOW | | | | | |---|---|--------|------------|------------| | cross-linked polymer -particulate | 1 | blower | skiploader | R, W, SS | | treated clay/ treated natural organic - particulate | 2 | blower | skiploader | R, I | | sorbent clay - particulate | 3 | blower | skiploader | R, I, P | | polypropylene - particulate | 3 | blower | skiploader | W, SS, DGC | | feathers - pillow | 3 | throw | skiploader | DGC, RT | Issue Date: 30/10/2020 Chemwatch: 5430-59 Page 5 of 16 Version No: 2.1.1.1 Print Date: 04/11/2020 **Antirock Primer** > blower skiploader R, I, W, P, DGC expanded mineral - particulate Legend DGC: Not effective where ground cover is dense R: Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - ▶ May be violently or
explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - Consider evacuation (or protect in place). - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Water spray or fog may be used to disperse /absorb vapour. - Contain spill with sand, earth or vermiculite. - Use only spark-free shovels and explosion proof equipment. - Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal - Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling Hydrogen sulfide (H2S or Sour Gas) may be present when loading and unloading transport vessels. Stay upwind and away from newly opened hatches and allow to vent thoroughly before handling material. Steam may be used to vent hatches. Keep all sources of ignition away from loading area. The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid. Even with proper grounding and bonding, this material can still accumulate an electrostatic charge. If sufficient charge is allowed to accumulate, electrostatic discharge and ignition of flammable air-vapour mixtures can occur. - Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. ### Contains low boiling substance: Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately. - Check for bulging containers. - Vent periodically - Always release caps or seals slowly to ensure slow dissipation of vapours - DO NOT allow clothing wet with material to stay in contact with skin - Electrostatic discharge may be generated during pumping this may result in fire. - Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec) - Avoid splash filling. - ▶ Do NOT use compressed air for filling discharging or handling operations. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights, heat or ignition sources. - When handling, DO NOT eat, drink or smoke - Vapour may ignite on pumping or pouring due to static electricity. ► DO NOT use plastic buckets - Earth and secure metal containers when dispensing or pouring product. Use spark-free tools when handling. - Avoid contact with incompatible materials. - Keep containers securely sealed. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. ### Store in original containers in approved flame-proof area. - No smoking, naked lights, heat or ignition sources. - **DO NOT** store in pits, depressions, basements or areas where vapours may be trapped. - Other information Safe handling - Keep containers securely sealed. - Store away from incompatible materials in a cool, dry well ventilated area. Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. Chemwatch: **5430-59** Page **6** of **16** #### Antirock Primer Issue Date: **30/10/2020**Print Date: **04/11/2020** ### Conditions for safe storage, including any incompatibilities Version No: 2.1.1.1 - Packing as supplied by manufacturer. - ▶ Plastic containers may only be used if approved for flammable liquid. - ▶ Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) #### Suitable container For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### For alkyl aromatics The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. - Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen - Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids. - Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides. - Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily. - Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity. - Microwave conditions give improved yields of the oxidation products. - ▶ Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 - Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. - Aromatics can react exothermically with bases and with diazo compounds. ### Hydrogen sulfide (H2S): - is a highly flammable and reactive gas - reacts violently with strong oxidisers, metal oxides, metal dusts and powders, bromine pentafluoride, chlorine trifluoride, chromium trioxide, chromyl chloride, dichlorine oxide, nitrogen trichloride, nitryl hypofluorite, oxygen difluoride, perchloryl fluoride, phospham, phosphorus persulfide, silver fulminate, soda-lime, sodium peroxide - is incompatible with acetaldehyde, chlorine monoxide, chromic acid, chromic anhydride, copper, nitric acid, phenyldiazonium chloride, sodium - ▶ forms explosive material with benzenediazonium salts - attacks many metals Flow or agitation of hydrogen sulfide may generate electrostatic charges due to low conductivity 38wbit ### SECTION 8 Exposure controls / personal protection ### Control parameters ### Occupational Exposure Limits (OEL) Storage incompatibility ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|---------------------|---------------|----------------------|-----------------------|---------------|---------------| | Australia Exposure Standards | toluene | Toluene | 50 ppm / 191 mg/m3 | 574 mg/m3 / 150 ppm | Not Available | Not Available | | Australia Exposure Standards | bitumen road making | Bitumen fumes | 5 mg/m3 | Not Available | Not Available | Not Available | | Australia Exposure Standards | acetone | Acetone | 500 ppm / 1185 mg/m3 | 2375 mg/m3 / 1000 ppm | Not Available | Not Available | ### **Emergency Limits** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------|------------------------------|---------------|---------------|---------------| | toluene | Toluene | Not Available | Not Available | Not Available | | bitumen road making | Petroleum asphalt; (Bitumen) | 30 mg/m3 | 330 mg/m3 | 2,000 mg/m3 | | acetone | Acetone | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |---------------------|---------------|---------------| | toluene | 500 ppm | Not Available | | bitumen (blown) | Not Available | Not Available | | bitumen road making | Not Available | Not Available | | acetone | 2,500 ppm | Not Available | ### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band
Limit | |-----------------|--|-------------------------------------| | bitumen (blown) | С | > 1 to ≤ 10 parts per million (ppm) | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | Chemwatch: **5430-59**Version No: **2.1.1.1** Page **7** of **16** **Antirock Primer** Issue Date: **30/10/2020**Print Date: **04/11/2020** #### **Exposure controls** #### For molten materials Provide mechanical ventilation; in general such ventilation should be provided at compounding/ converting areas and at fabricating/ filling work stations where the material is heated. Local exhaust ventilation should be used over and in the vicinity of machinery involved in handling the molten material. #### Keep dry!! Processing temperatures may be well above boiling point of water, so wet or damp material may cause a serious steam explosion if used in unvented equipment. Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. ## Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Personal protection - Safety glasses with side shields. - Chemical goggles. # Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] ### Skin protection ### See Hand protection below - ► Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber ### NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. ### Hands/feet protection The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Issue Date: **30/10/2020**Print Date: **04/11/2020** - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - ▶ When handling hot materials wear heat resistant, elbow length gloves - Rubber gloves are not recommended when handling hot objects, materials - ▶ Protective gloves
eg. Leather gloves or gloves with Leather facing #### **Body protection** #### See Other protection below - ▶ When handling hot or molten liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. - Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapour exposure. - CAUTION: Vapours may be irritating - Overalls. - PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - Eyewash unit. #### Other protection - Ensure there is ready access to a safety shower - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. ### Recommended material(s) ### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: ### "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Antirock Primer | Material | СРІ | |-------------------|-----| | PE/EVAL/PE | A | | TEFLON | В | | BUTYL | С | | BUTYL/NEOPRENE | С | | CPE | С | | HYPALON | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | | SARANEX-23 | С | | SARANEX-23 2-PLY | С | | VITON | С | | VITON/CHLOROBUTYL | С | | VITON/NEOPRENE | С | #### * CPI - Chemwatch Performance Index A: Best Selection ## Respiratory protection Type AX-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|-----------------------------| | up to 10 x ES | AX-AUS P2 | - | AX-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | AX-AUS / Class
1 P2 | - | | up to 100 x ES | - | AX-2 P2 | AX-PAPR-2 P2 ^ | ### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deqC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used For molten materials: Issue Date: **30/10/2020**Print Date: **04/11/2020** B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ### **SECTION 9 Physical and chemical properties** ### Information on basic physical and chemical properties | Appearance | Appearance Black colour highly flammable liquid with solvent odour; not miscible with water. | | | |--|--|---|----------------| | Physical state | Liquid | Relative density (Water = 1) | 0.91 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 465 | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | <500 | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | -20 (acetone) | Taste | Not Available | | Evaporation rate | 2.24 BuAC = 1 | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 12.8 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 2.5 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | 3.1 | VOC g/L | 340 | ### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Extremely high temperatures. Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 Toxicological information** ### Information on toxicological effects Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. ### Inhaled High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma: fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death, C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Acute effects from
inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system Chemwatch: 5430-59 Page 10 of 16 Issue Date: 30/10/2020 Version No: 2.1.1.1 Print Date: 04/11/2020 #### **Antirock Primer** depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics. Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced. Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000 -8000 ppm for 4 to 8 hour exposures). It is likely that acute inhalation exposure to alkylbenzenes resembles that to general anaesthetics. Alkylbenzenes are not generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed ## Ingestion Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if swallowed. Ingestion may result in nausea, pain and vomiting. Vomit entering the lungs by aspiration may cause potentially lethal chemical pneumonitis ## Skin Contact The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either - produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or - produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eve damage/ulceration may occur. The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in impaired fertility on the basis of: clear evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in developmental toxicity, generally on the basis of: - clear results in appropriate animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Exposure to the material may cause concerns for humans owing to possible developmental toxic effects, generally on the basis that results in appropriate animal studies provide strong suspicion of developmental toxicity in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of other toxic effects Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems ### Chronic There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals. Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties ### Animal studies: No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at Chemwatch: **5430-59**Version No: **2.1.1.1** Page 11 of 16 **Antirock Primer** Issue Date: **30/10/2020**Print Date: **04/11/2020** concentrations of 668, 2220 and
6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. | | TOXICITY | IRRITATION | |---------------------|--|--| | Antirock Primer | Not Available | Not Available | | | TOXICITY | IRRITATION | | | 100 mg/kg ^[2] | Eye (rabbit): 2mg/24h - SEVERE | | | 200 mg/kg ^[2] | Eye (rabbit):0.87 mg - mild | | | 50 mg/kg ^[2] | Eye (rabbit):100 mg/30sec - mild | | toluene | Dermal (rabbit) LD50: 12124 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | | Inhalation (rat) LC50: >6667.383825 mg/l/1hd ^[2] | Skin (rabbit):20 mg/24h-moderate | | | Inhalation (rat) LC50: 49 mg/l/4H ^[2] | Skin (rabbit):500 mg - moderate | | | Oral (rat) LD50: 636 mg/kg ^[2] | Skin: adverse effect observed (irritating) ^[1] | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | bitumen (blown) | Not Available | Eye: no adverse effect observed (not irritating) ^[1] | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | bitumen road making | Not Available | Eye: no adverse effect observed (not irritating) ^[1] | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | | | | | TOXICITY | IRRITATION | | | TOXICITY =1159 mg/kg ^[2] | IRRITATION Eye (human): 500 ppm - irritant | | | | | | | =1159 mg/kg ^[2] | Eye (human): 500 ppm - irritant | | | =1159 mg/kg $^{[2]}$
10 mg/kg $^{[2]}$ | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate | | | =1159 mg/kg ^[2] 10 mg/kg ^[2] 12000 mg/kg ^[2] | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate Eye (rabbit): 3.95 mg - SEVERE | | | =1159 mg/kg ^[2] 10 mg/kg ^[2] 12000 mg/kg ^[2] 3100 mg/kg ^[2] | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate Eye (rabbit): 3.95 mg - SEVERE Eye: adverse effect observed (irritating) ^[1] | | | =1159 mg/kg ^[2] 10 mg/kg ^[2] 12000 mg/kg ^[2] 3100 mg/kg ^[2] 4000-8000 mg/kg ^[2] | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate Eye (rabbit): 3.95 mg - SEVERE Eye: adverse effect observed (irritating) ^[1] Skin (rabbit): 500 mg/24hr - mild | | acetone | =1159 mg/kg ^[2] 10 mg/kg ^[2] 12000 mg/kg ^[2] 3100 mg/kg ^[2] 4000-8000 mg/kg ^[2] 500 mg/kg ^[2] | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate Eye (rabbit): 3.95 mg - SEVERE Eye: adverse effect observed (irritating) ^[1] Skin (rabbit): 500 mg/24hr - mild Skin (rabbit): 395mg (open) - mild | | acetone | =1159 mg/kg ^[2] 10 mg/kg ^[2] 12000 mg/kg ^[2] 3100 mg/kg ^[2] 4000-8000 mg/kg ^[2] 500 mg/kg ^[2] 5000 mg/kg ^[2] | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate Eye (rabbit): 3.95 mg - SEVERE Eye: adverse effect observed (irritating) ^[1] Skin (rabbit): 500 mg/24hr - mild Skin (rabbit): 395mg (open) - mild | | acetone | =1159 mg/kg ^[2] 10 mg/kg ^[2] 12000 mg/kg ^[2] 3100 mg/kg ^[2] 4000-8000 mg/kg ^[2] 500 mg/kg ^[2] 5000 mg/kg ^[2] 5000 mg/kg ^[2] | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate Eye (rabbit): 3.95 mg - SEVERE Eye: adverse effect observed (irritating) ^[1] Skin (rabbit): 500 mg/24hr - mild Skin (rabbit): 395mg (open) - mild | | acetone | =1159 mg/kg ^[2] 10 mg/kg ^[2] 12000 mg/kg ^[2] 3100 mg/kg ^[2] 4000-8000 mg/kg ^[2] 500 mg/kg ^[2] 5000 mg/kg ^[2] 5000 mg/kg ^[2] 5000 mg/kg ^[2] 5600-8000 mg/kg ^[2] | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate Eye (rabbit): 3.95 mg - SEVERE Eye: adverse effect observed (irritating) ^[1] Skin (rabbit): 500 mg/24hr - mild Skin (rabbit): 395mg (open) - mild | | acetone | =1159 mg/kg ^[2] 10 mg/kg ^[2] 12000 mg/kg ^[2] 3100 mg/kg ^[2] 4000-8000 mg/kg ^[2] 500 mg/kg ^[2] 5000 mg/kg ^[2] 5000 mg/kg ^[2] 5000 mg/kg ^[2] 5000 mg/kg ^[2] 8000 mg/kg ^[2] | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate Eye (rabbit): 3.95 mg - SEVERE Eye: adverse effect observed (irritating) ^[1] Skin (rabbit): 500 mg/24hr - mild Skin (rabbit): 395mg (open) - mild | | acetone | =1159 mg/kg ^[2] 10 mg/kg ^[2] 12000 mg/kg ^[2] 3100 mg/kg ^[2] 4000-8000 mg/kg ^[2] 500 mg/kg ^[2] 5000 mg/kg ^[2] 5000 mg/kg ^[2] 5000-8000 mg/kg ^[2] 8000 mg/kg ^[2] Dermal (rabbit) LD50: 20000 mg/kg ^[2] | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate Eye (rabbit): 3.95 mg - SEVERE Eye: adverse effect observed (irritating) ^[1] Skin (rabbit): 500 mg/24hr - mild Skin (rabbit): 395mg (open) - mild | | acetone | =1159 mg/kg ^[2] 10 mg/kg ^[2] 12000 mg/kg ^[2] 3100 mg/kg ^[2] 4000-8000 mg/kg ^[2] 5000 mg/kg ^[2] Dermal (rabbit) LD50: 20000 mg/kg ^[2] Inhalation (rat) LC50: 100.2 mg//8hr ^[2] | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate Eye (rabbit): 3.95 mg - SEVERE Eye: adverse effect observed (irritating) ^[1] Skin (rabbit): 500 mg/24hr - mild Skin (rabbit): 395mg (open) - mild | | acetone | =1159 mg/kg ^[2] 10 mg/kg ^[2] 12000 mg/kg ^[2] 3100 mg/kg ^[2] 4000-8000 mg/kg ^[2] 500 mg/kg ^[2] 5000 mg/kg ^[2] 5000 mg/kg ^[2] 5000 mg/kg ^[2] 5000-8000 mg/kg ^[2] 8000 mg/kg ^[2] Dermal (rabbit) LD50: 20000 mg/kg ^[2] Inhalation (rat) LC50: 100.2 mg/kg ^[2] Oral (mouse) LD50: 3000 mg/kg ^[2] | Eye (human): 500 ppm - irritant Eye (rabbit): 20mg/24hr -moderate Eye (rabbit): 3.95 mg - SEVERE Eye: adverse effect observed (irritating) ^[1] Skin (rabbit): 500 mg/24hr - mild Skin (rabbit):395mg (open) - mild | 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2." Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of ### **Acute Toxicity** TOLUENE dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. For toluene: Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies. **Humans** - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case. Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and haemorrhage of the lungs and acute tubular necrosis were Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and haemorrhage of the lungs and acute tubular necrosis were found on autopsy. Issue Date: **30/10/2020**Print Date: **04/11/2020** Central nervous system effects (headaches, dizziness, intoxication) and eye irritation occurred following inhalation exposure to 100 ppm toluene 6 hours/day for 4 days. Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea . Exposure to 10,000-30,000 ppm has been reported to cause narcosis and death Toluene can also strip the skin of lipids causing dermatitis Animals - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day for 3 days #### Subchronic/Chronic Effects: Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm. **Humans** - Chronic occupational exposure and
incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxicity and, in one case, was a cardiac sensitiser and fatal cardiotoxin. Neural and cerebellar dystrophy were reported in several cases of habitual "glue sniffing." An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neutropenia. Exposure levels were not given in the secondary reference; however, the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in corn oil administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, piloerection, lachrymation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-observed-adverse effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowest-observed-adverse effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day). #### **Developmental/Reproductive Toxicity** Exposures to high levels of toluene can result in adverse effects in the developing human foetus. Several studies have indicated that high levels of toluene can also adversely effect the developing offspring in laboratory animals. Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy Animals - Sternebral alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. CFLP Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring. **Absorption** - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor. Dermal absorption is expected to be higher upon exposure to the liquid; however, exposure is limited by the rapid evaporation of toluene. **Distribution** - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues. Metabolism - The metabolites of inhaled or ingested toluene include benzyl alcohol resulting from the hydroxylation of the methyl group. Further oxidation results in the formation of benzaldehyde and benzoic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites. Exception - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The exception of henzoyl glucuronide accounts for 10-20%. Excretion - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The excretion of benzoyl glucuronide accounts for 10-20%, and excretion of unchanged toluene through the lungs also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours after exposure. ### BITUMEN (BLOWN) ACETONE as extracts of steam-refined and air-refined bitumens: The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed-effect-levels in the drinking water study were 1% for male rats (900 mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m3 and in rats at 26,100 mg/m3. The no-observable-effect level for developmental toxicity was determined to be 5220 mg/m3 for both rats and mice. The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. The Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m3, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals. The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m3 have been reported. Neurobehavioral studies with acetone-exposed employees have recently shown that 8-hr exposures in excess of 2375 mg/m3 were not associated with any dose-related changes in response time, vigilance, or digit span scores. Clinical case studies, controlled human volunteer studies, animal research, and occupational field evaluations all indicate that the NOAEL for this effect is 2375 mg/m3 or greater. # BITUMEN (BLOWN) & BITUMEN ROAD MAKING No significant acute toxicological data identified in literature search WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. | Acute Toxicity | ~ | Carcinogenicity | ✓ | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | ✓ | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | ✓ | | Mutagenicity | × | Aspiration Hazard | ✓ | Legend: X - Data either not available or does not fill the criteria for classification 🎺 – Data available to make classification Issue Date: **30/10/2020**Print Date: **04/11/2020** ### **Toxicity** | | Endpoint | Test Duration (hr) | Species | Value | Source | |---------------------|------------------|--|---|------------------|------------------| | Antirock Primer | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | LC50 | 96 | Fish | 5.5mg/L | 2 | | toluene | EC50 | 48 | Crustacea | 3.78mg/L | 5 | | | EC50 | 96 | Algae or other aquatic plants | 13mg/L | 2 | | | NOEC | 168 | Crustacea | 0.74mg/L | 5 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | LC50 | 96 | Fish | >1-mg/L | 2 | | bitumen (blown) | EC50 | 72 | Algae or other aquatic plants | >1-mg/L | 2 | | | NOEL | 504 | Crustacea | >=1-mg/L | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | h:4 | LC50 | 96 | Fish | >1-mg/L | 2 | | bitumen road making | EC50 | 72 | Algae or other aquatic plants | >1-mg/L | 2 | | | NOEL | 504 | Crustacea | >=1-mg/L | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | LC50 | 96 | Fish | 5-540mg/L | 2 | | acetone | EC50 | 48 | Crustacea | 6098.4mg/L | 5 | | | NOEC | 240 | Crustacea | 1-866mg/L | 2 | | Legend: | V3.12 (QSAR | n 1. IUCLID Toxicity Data 2. Europe ECHA Reg.
) - Aquatic Toxicity Data (Estimated) 4. US EPA
(Japan) - Bioconcentration Data 7. METI (Japar | , Ecotox database - Aquatic Toxicity Data 5. EC | | | Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved
waste sites. DO NOT discharge into sewer or waterways. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | | |------------|---------------------------|----------------------------------|--| | toluene | LOW (Half-life = 28 days) | LOW (Half-life = 4.33 days) | | | acetone | LOW (Half-life = 14 days) | MEDIUM (Half-life = 116.25 days) | | ### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|------------------| | toluene | LOW (BCF = 90) | | acetone | LOW (BCF = 0.69) | ### Mobility in soil | Ingredient | Mobility | |------------|--------------------| | toluene | LOW (KOC = 268) | | acetone | HIGH (KOC = 1.981) | ### **SECTION 13 Disposal considerations** ### Waste treatment methods Product / Packaging disposal - ▶ Containers may still present a chemical hazard/ danger when empty. - ► Return to supplier for reuse/ recycling if possible. ### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been Issue Date: **30/10/2020**Print Date: **04/11/2020** contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### **SECTION 14 Transport information** ### **Labels Required** Marine Pollutant HAZCHEM NO CHEM •3YE ### Land transport (ADG) | UN number | 1133 | |------------------------------|--| | UN proper shipping name | ADHESIVES containing flammable liquid | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | Packing group | Ш | | Environmental hazard | Not Applicable | | Special precautions for user | Special provisions Not Applicable Limited quantity 5 L | ### Air transport (ICAO-IATA / DGR) | UN number | 1133 | | | |------------------------------|---|----------------------------|------| | UN proper shipping name | Adhesives containing flammable liquid | | | | | ICAO/IATA Class | 3 | | | Transport hazard class(es) | ICAO / IATA Subrisk | Not Applicable | | | | ERG Code | 3L | | | Packing group | II | | | | Environmental hazard | Not Applicable | | | | | Special provisions | | A3 | | | Cargo Only Packing In | estructions | 364 | | | Cargo Only Maximum | Qty / Pack | 60 L | | Special precautions for user | Passenger and Cargo | Packing Instructions | 353 | | | Passenger and Cargo Maximum Qty / Pack | | 5 L | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y341 | | | Passenger and Cargo | Limited Maximum Qty / Pack | 1 L | ### Sea transport (IMDG-Code / GGVSee) | UN number | 1133 | | |------------------------------|--|----------------------| | UN proper shipping name | ADHESIVES contain | ing flammable liquid | | Transport hazard class(es) | | 3 Not Applicable | | Packing group | II | | | Environmental hazard | Not Applicable | | | Special precautions for user | EMS Number Special provisions Limited Quantities | | Issue Date: **30/10/2020**Print Date: **04/11/2020** #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### toluene is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs ### bitumen (blown) is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2A: Probably carcinogenic to humans #### bitumen road making is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B : Possibly carcinogenic to humans #### acetone is found on the following regulatory lists $\label{prop:control} \mbox{Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals}$ Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australian Inventory of Industrial Chemicals (AIIC) ### **National Inventory Status** | National Inventory | Status | |--------------------------------|---| | Australia - AIIC | Yes | | Australia - Non-Industrial Use | No (toluene; bitumen (blown); bitumen road making; acetone) | | Canada - DSL | Yes | | Canada - NDSL | No (toluene; bitumen (blown); bitumen road making; acetone) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | No (bitumen (blown); bitumen road making) | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | No (bitumen (blown)) | | Vietnam - NCI | Yes | | Russia - ARIPS | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ### **SECTION 16 Other information** | Revision Date | 30/10/2020 | |---------------|------------| | Initial Date | 30/10/2020 | ### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level Chemwatch: 5430-59 Page 16 of 16 Issue Date: 30/10/2020 Version No: 2.1.1.1 Print Date: 04/11/2020 **Antirock Primer** TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.